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Abstract

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll data were assimilated with an established three-dimensional
global ocean model. The assimilation improved estimates of chlorophyll relative to a free-run (no assimilation) model. Compared
to SeaWiFS, annual bias of the assimilation model was 5.5%, with an uncertainty of 10.1%. The free-run model had a bias of
21.0% and an uncertainty of 65.3%. In situ data were compared to the assimilation model over a 6-year time period from 1998
through 2003, indicating a bias of 0.1%, and an uncertainty of 33.4% for daily coincident, co-located data. SeaWiFS bias was
slightly higher at −1.3% and nearly identical uncertainty at 32.7%. The free-run bias and uncertainty at −1.4% and 61.8%,
respectively, indicated how much the assimilation improved model results. Annual primary production estimates for the 1998–
2003 period produced a nearly 50% improvement by the assimilation model over the free-run model as compared to a widely used
algorithm using SeaWiFS chlorophyll data. These results suggest the potential of assimilation of satellite ocean chlorophyll data for
improving model results.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

There is no substitute for observations in the effort to
understand the oceans' biogeochemical cycles. Howev-
er, observations alone cannot allow a full understanding.
They are necessarily limited in time and space. This is
true even for remote-sensing observations, which are
generally limited to the surface and to once-daily
temporal frequencies. Often the most important vari-
ables in the oceanic system, such as carbon and
nutrients, are not directly observed. For example,
ocean color sensors detect chlorophyll concentrations,
which are related to organic carbon. But chlorophyll is
not necessarily carbon, surface observations are not
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necessarily representative of the water column, and
biomasses are not necessarily indicative of fluxes.

Numerical models can potentially connect the
satellite observations, and provide meaningful informa-
tion that observations cannot. Numerical models have
no time or space limitations. They can translate the
observations into the key geophysical variables that
directly affect the oceans' biogeochemical cycles. And
they can convert the remote sensing snapshots into
fluxes. Finally, since numerical models are constructed
with fundamental principles of ocean physics, biology,
geochemistry, and radiative transfer, they can potentially
provide understanding of the causes for distributions
and changes seen in the remote sensing observations.

In practice, models are deficient in their representa-
tion of processes and interactions, and consequently
their outputs stray from the observations. If they can be
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inextricably linked to the observations, then models can
provide greatly enhanced understanding of biogeo-
chemical cycling, by identifying the nature of the
deficiencies and providing clues to improvement, as
well as by nudging model variables toward realism.

Coupling models and data together through data
assimilation is among the tightest and most intimate
interrelationships as exists in computational Earth
sciences research. In the data assimilation method, the
model results are constrained by the observations. It is a
field of research that has many aspects and challenges,
but it can potentially be rewarding, since it maximizes
the value of the data, but at the same time allows the
fundamental processes in the model to act naturally.

Here an existing coupled general circulation, bio-
geochemical, and radiative model of the global oceans is
used as a platform to assimilate Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) chlorophyll data
products. The model can potentially enable us to
investigate biogeochemical pathways, fluxes, and reser-
voirs, as well as the underlying processes, to produce a
better understanding of the ocean system and how it
operates. However, given the lack of maturity of data
assimilation for ocean biology and biogeochemistry, the
more limited objective in this effort is to improve
estimates of surface chlorophyll and depth-integrated
primary production, respectively. This effort represents
an initial attempt to assimilate remote sensing ocean
color data in a global model.

2. Background

Data assimilation can be classified into two groups,
variational (inverse) methods and forward (sequential)
methods (Anderson et al., 2000). Although a complete
description of the specific methods is beyond the scope of
this paper, a brief overview can help distinguish the
classes. The variational, or inverse, methods construct a
cost function, which is a measure of the difference
between model output and observations over a specified
time and space interval.Minimization of this cost function
is the goal of the inverse methodology subject to con-
straint by the model (McGillicuddy et al., 1998), in which
model parameters, boundary and initial conditions, and
forcing functions can be involved. Minimization methods
are quite varied in ocean ecosystem studies, including
gradient steepest descent (Natvik et al., 2001), conjugate
gradient method (Fasham et al., 1995, 1999), simulated
annealing (Hurtt and Armstrong, 1996, 1999), and a
micro-genetic algorithm (Schartau and Oschlies, 2003),
among others (see Table 1). The most popular method in
ocean biology has been the adjoint method. This is an
efficient optimization method that reduces the large
number of required iterations by first finding the gradient
of the cost function, although iteration is still required.
The inverse methods optimally modify model parameters
using information from the data at the time of the model
output, and reverse the flow of information back to the
model at the time of its initial condition, hence the term
inverse.

The focus of most work on variational marine
biological applications has been on parameter estima-
tion, i.e., to analyze and improve model performance by
adjusting parameters to conform to observations.
Variational methods are quite well-suited to parameter
optimization and also have the advantage of mass
conservation (Anderson et al., 2000). Improvement in
model parameterizations has largely been achieved as
measured by reducing model-data misfits as the direct
result of application of variational methods. However,
the parameter adjustments tend to be specific to the
particular model formulation, and may not be applicable
for other models or applications. The methods can also
be computationally expensive for complex models and
large areas.

The sequential class of data assimilation methods
operates on the outputs of the model, rather than its
internal parameters. A model field is created after an
integration (time) step, which is then combined with the
observations to produce an analysis or best state estimate.
In the simplest case, the analyzed field is then used to re-
initialize themodel for the next execution step. Themodel
parameters remain fixed in the method but the model
outputs are driven toward the observations through
constant confrontation with data. Examples of this type
of assimilation are direct data insertion (Ishizaka, 1990),
nudging (Armstrong et al., 1995), optimal interpolation
(Popova et al., 2002), and various implementations of the
Kalman filter. This class of methods is most appropriate
for improved state and flux estimation, i.e., to produce
more accurate derived variables, such as chlorophyll and
primary production. Sequential methods have limited
ability for parameter estimation beyond that which can be
achieved though a reasonably comprehensive validation
effort and they do not conserve mass or flux, but they do
have a reasonable computational cost.

Assimilation of satellite ocean color data is a
relatively new phenomenon in ocean sciences. There
now exists a long uninterrupted time series of high
quality data beginning with SeaWiFS (data set begin-
ning in September 1997), and the Moderate Resolution
Imaging Spectroradiometer (MODIS)-Aqua (data set
beginning in July 2002). Despite the recent proliferation
of remote sensing data, relatively few data assimilation



Table 1
Previous efforts in assimilation of in situ and simulated data for ocean biological/ecological studies

Authors Assimilation method Model
dimension

Location Assimilation data
source

Variational methods
Fasham et al. (1995) Conjugate gradient method 0D Northwest Atlantic (BATS) In situ
Fasham et al. (1999) Conjugate gradient method 0D Northeast Atlantic In situ
Natvik et al. (2001) Gradient steepest descent/conjugate

gradient method
0D Arbitrary Simulated

Harmon and Challenor
(1997)

Markov chain Monte Carlo 0D Arbitrary Simulated

Hurtt and Armstrong
(1996)

Simulated annealing 0D Northwest Atlantic (BATS) In situ

Hurtt and Armstrong
(1999)

Simulated annealing 0D North Atlantic (BATS and OWSI) In situ

Matear (1995) Simulated annealing 0D Northeast Pacific (Station P) In situ
Weber et al. (2005) Micro genetic algorithm 0D Northwest Atlantic (BATS) In situ
Lawson et al. (1996) Adjoint 0D Arbitrary Simulated
Fennel et al. (2001) Adjoint 0D Northwest Atlantic (BATS) In situ
Schartau et al. (2001) Adjoint 0D Northwest Atlantic (BATS) In situ
Spitz et al. (1998) Adjoint 0D Northwest Atlantic (BATS) In situ
Spitz et al. (2001) Adjoint 0D Northwest Atlantic (BATS) In situ
Vallino (2000) Adjoint 0D Arbitrary In situ
Kuroda and Kishi (2004) Adjoint 0D Northwest Pacific In situ
Leredde et al. (2005) Adjoint 0D Arbitrary Simulated
Oschlies and Schartau

(2005)
Micro genetic algorithm 1D North/Equatorial Atlantic In situ

Schartau and Oschlies
(2003)

Micro genetic algorithm 1D North Atlantic (3 stations) In situ

Freidrichs (2001) Adjoint 1D Equatorial Pacific Simulated
Faugeras et al. (2003) Adjoint 1D Mediterranean Sea In situ
Faugeras et al. (2004) Adjoint 1D Mediterranean Sea In situ
Prunet et al. (1996) Adjoint 1D Northeast Pacific (Station P) In situ
Miller et al. (2000) Green's function 3D California coast In situ
Gunson et al. (1999) Adjoint 3D North Atlantic Simulated
Schlitzer (2002) Adjoint 3D Southern Ocean In situ

Sequential methods
Losa et al. (2003) SIR Sequential Importance Resampling filter 0D Northwest Atlantic (BATS) In situ
Eknes and Evensen (2002) Ensemble Kalman filter 1D Arbitrary Simulated
Allen et al. (2002) Ensemble Kalman filter 1D Cretan Sea In situ
Hoteit et al. (2003) Singular evolutive extended Kalman filter 1D Cretan Sea In situ
Ibrahim et al. (2004) Singular evolutive extended Kalman filter 1D Cretan Sea In situ
Magri et al. (2005) Singular evolutive extended Kalman filter 1D Ligurian Sea In situ
Carmillet et al. (2001) Singular evolutive extended Kalman filter 3D North Atlantic Simulated
Triantafyllou et al. (2003) Singular evolutive interpolated Kalman filter 3D Cretan Sea Simulated
Anderson et al. (2000) Optimal interpolation 3D Gulf Stream In situ
Besiktepe et al. (2003) Optimal interpolation 3D Massachusetts Bay In situ
Popova et al. (2002) Optimal interpolation 3D Northeast Atlantic In situ

The table is divided into those utilizing variational methods and those using sequential methods.
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studies have utilized it (Table 2). Hemmings et al. (2003,
2004) used variational methods in a 0-dimensional
representation of the North Atlantic to refine model
parameters. Results were mixed, as the assimilation
improved chlorophyll concentrations in some areas, but
seasonal variability was poorly represented. Losa et al.
(2004) used variational methods with Coastal Zone
Color Scanner (CZCS) data in a 0-dimensional
simulation of the North Atlantic. Spatial patterns of
chlorophyll were much improved using the optimized
model as compared to a CZCS composite for 1979–
1985. Some of the problems, especially in coastal areas
and high latitudes, were attributed to data error.
Freidrichs (2002) used SeaWiFS data in a 1-dimensional
adjoint assimilation in the equatorial Pacific Ocean. Her
emphasis was on model diagnosis and parameter



Table 2
Data assimilation efforts in ocean biological/ecological studies using satellite data

Authors Assimilation method
class

Specific assimilation method Model
dimension

Location Satellite assimilation data
source

Hemmings et al. (2003) Variational Conjugate direction set method 0D North Atlantic
(30 stations)

SeaWiFS

Hemmings et al. (2004) Variational Conjugate direction set method 0D North Atlantic
(30 stations)

SeaWiFS

Losa et al. (2004) Variational Maximum data cost criterion 0D North Atlantic CZCS
Freidrichs (2002) Variational Adjoint 1D Equatorial Pacific SeaWiFS
Garcia-Gorriz et al.
(2003)

Variational Adjoint 3D Adriatic Sea SeaWiFS

Ishizaka (1990) Sequential Insertion 3D Southeast US coast CZCS
Armstrong et al. (1995) Sequential Nudging 3D Atlantic CZCS
Natvik and Evensen
(2003a,b)

Sequential Ensemble Kalman filter 3D North Atlantic SeaWiFS

Present effort Sequential Conditional relaxation analysis
method

3D Global SeaWiFS

CZCS indicates the historical sensor Coastal Zone Color Scanner that flew from late 1978 to mid-1986.
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estimation, and used the time series from September
1997 to April 1998. She found that assimilation of
SeaWiFS 8-day composites could only provide realistic
parameter sets when a portion of the time series was
excluded. This was attributed to a change in ecosystem
dynamics during this period and inadequacy of the 5-
component model to represent it. She emphasized the
importance and utility of inverse methods for model
formulation. Garcia-Gorriz et al. (2003) also assimilated
SeaWiFS data using the adjoint method. They studied
the Adriatic Sea in January and June 1998. By varying
recovered parameter sets, months, and portions of
Adriatic Sea, they found misfits (biases in this case)
between the assimilation and SeaWiFS ranging from
79% (more than the unassimilated model) to 22%. The
best case improvement occurred in the Southern portion
of the sea in June. Data error was found to be an
important consideration for application of the adjoint
method.

Although Schlitzer (2002) and Oschlies and Schartau
(2005) used in situ data in their inverse assimilations,
they used SeaWiFS data to evaluate their results.
Schlitzer (2002) estimated export production (derived
from primary production from SeaWiFS) in the
Southern Ocean to be 2–5 times higher in the
assimilation model than in SeaWiFS. This was attrib-
uted to the inability of ocean color sensors to detect sub-
surface chlorophyll and/or errors in the conversion from
primary to export production. Oschlies and Schartau
(2005) used an inverse method at three stations in the
North Atlantic, and applied it to the entire basin.
Primary production results from the assimilation model
compared favorably with estimates using CZCS data, but
agreement of spatial patterns and temporal variability of
chlorophyll between the model and SeaWiFS 5-year
mean chlorophyll (1997–2002) was lacking.

Utilizing a sequential data assimilation methodology,
Ishizaka (1990) directly inserted CZCS chlorophyll into
a 3-dimensional model of the southeast US coast.
Immediate improvements in chlorophyll were observed
this multi-variate assimilation but did not hold for more
than 2 days. Cross-shelf fluxes of chlorophyll were
reduced, because the unassimilated model appeared to
overestimate chlorophyll, but the temporal variability
was unaffected. Armstrong et al. (1995) used a nudging
method with CZCS data in the North Atlantic. Initial
results motivated a major change to the model
configuration, which then showed good comparisons
with CZCS chlorophyll. The ratio of assimilated
chlorophyll to CZCS chlorophyll (a measure of the
bias) ranged from 0.9 to 1.1 over most of the North
Atlantic, when expressed as zonal means, with values
N1.5 in the equatorial region.

A sequential assimilation approach for state estima-
tion using modern ocean color data was employed by
Natvik and Evensen (2003a,b). They used SeaWiFS data
with an Ensemble Kalman Filter (EnKF) assimilation in
a three-dimensional model of the North Atlantic.
SeaWiFS errors were specified at 35% based on pre-
launch goals (Hooker et al., 1992). Model errors were
assumed to be related to atmospheric forcing data,
specifically wind stress and surface temperature. Their
results showed the EnKF was capable of providing an
updated state consistent with SeaWiFS, including both
phytoplankton and nitrate in a multi-variate analysis,
over the period April and May 1998. However,
quantitative expressions for the agreement were difficult
to interpret.
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In the present effort, a type of sequential assimilation
model is used in a global context with multi-year
SeaWiFS data with explicit observation error accounting.
The emphasis is on state and flux estimation; specifically,
improved estimates of surface chlorophyll and depth-
integrated primary production, respectively. Quantitative
measures and statistical analyses are utilized to evaluate
the effects of data assimilation in a global context.

3. Methods

3.1. Coupled three-dimensional circulation/biogeo-
chemical/radiative model of the global ocean

A diagrammatic representation of a fully coupled
general circulation/biogeochemical/radiative model,
called the NASA Ocean Biogeochemical Model
(NOBM), illustrates the complex interactions among the
three major components, ocean general circulation,
radiative, and biogeochemical processes models (Fig. 1).
The Ocean General Circulation Model (OGCM) is a
reduced gravity representation of circulation fields
(Schopf and Loughe, 1995). It is global in scale, extending
from near the South Pole to 72° N, in increments of 2/3°
latitude and 1.25° longitude, comprising all regions where
bottom depth N200 m. The model contains 14 vertical
layers, in quasi-isopycnal coordinates, and is driven by
Fig. 1. Pathways and interactions among the components o
wind stress, sea surface temperature (SST), and shortwave
radiation (Table 3).

The biogeochemical processes model contains 4
phytoplankton groups, 4 nutrient groups, a single
herbivore group, and 3 detrital pools (Fig. 2). The
phytoplankton groups differ in maximum growth rates,
sinking rates, nutrient requirements, and optical prop-
erties. The 4 nutrients are nitrate, regenerated ammoni-
um, silica to regulate diatom growth, and iron. Three
detrital pools provide for storage of organic material,
sinking, and eventual remineralization back to usable
nutrients. This results in 12 state variables in the fully
coupled model. Atmospheric deposition of iron and sea
ice are required as an external forcing fields (Table 3).
The biogeochemical processes model is fully described
in Appendix A.

Radiative transfer calculations provide the underwa-
ter irradiance fields necessary to drive growth of the
phytoplankton groups, and interact with the heat budget.
The Ocean-Atmosphere Radiative Model (OARM;
Gregg, 2002a) contains a treatment of the spectral and
directional properties of radiative transfer in the oceans,
and explicitly accounts for clouds. The atmospheric
radiative model is based on the Gregg and Carder (1990)
spectral model, extended to the spectral regions 200 nm
to 4 μm. It requires external monthly climatologies of
cloud properties (cloud cover and liquid water path),
f the NASA Ocean Biogeochemical Model (NOBM).



Table 3
Forcing data sets required to force NOBM, their purpose, and sources
of data

Variable Purpose Source

General circulation model
Wind stress Surface forcing NCEP

reanalysis
Sea surface temperature Surface forcing OISST
Shortwave radiation Surface forcing NCEP

reanalysis

Biogeochemical process model
Aerosol composition Surface input (iron) GOCART
Sea ice Surface forcing OISST

Radiative transfer model
Wind speed Surface reflectance/aerosols NCEP

reanalysis
Precipitable water Water vapor absorption NCEP

reanalysis
Surface pressure O2 absorption/Rayleigh

scattering
NCEP
reanalysis

Relative humidity Marine aerosols NCEP
reanalysis

Ozone Gaseous absorption TOMS
Cloud cover Cloud distribution ISCCP
Cloud liquid water path Cloud attenuation properties ISCCP

NCEP is the National Center for Environmental Prediction, TOMS is the
Total Ozone Mapping Spectrometer, ISCCP is the International Satellite
Cloud Climatology Project, OISST is the Optimum Interpolated Sea
Surface Temperature product, and GOCART is the Global Ozone
Chemistry Aerosol Radiation and Transport model (Ginoux et al., 2001).
Daily data are used for the 2001 assimilation analyses, andmonthly data are
used for the 1997–2003 analyses.
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surface pressure, wind speeds, relative humidity,
precipitable water, and ozone (Table 3). Aerosols are
considered to be strictly of marine origin and are
computed as in Gregg and Carder (1990).

Oceanic radiative properties are driven by water
absorption and scattering, the optical properties of the
phytoplankton groups, and chromophoric dissolved
organic matter (CDOM). Three irradiance paths are
enabled: a downwelling direct path, a downwelling
diffuse (scattered) path, and an upwelling diffuse path.
All oceanic radiative calculations include the spectral
nature of the irradiance.

3.2. Data assimilation

The data assimilation methodology used here is the
Conditional Relaxation Analysis Method (CRAM; Oort,
1983). The method is used for bias correction in Optimal
Interpolation Sea Surface Temperature (OISST) data
(Reynolds, 1988; Reynolds and Smith, 1994), and has
been used successfully for ocean color in situ-satellite
applications (Gregg and Conkright, 2001, 2002; Conk-
right and Gregg, 2003). CRAM uses data to provide an
internal boundary condition, which here is the satellite
ocean chlorophyll and solves for an analyzed chloro-
phyll field of model and data

j2CTðanaÞ ¼ j2CTðmodelÞ ð1Þ
where CT(ana) is the final analyzed field of total
chlorophyll and CT(model) is the model field (sum of
the 4 phytoplankton groups). Insertion of satellite
chlorophyll into the model field serves a bias-correction
function. The matching of Laplacian's of the model
chlorophyll and model/satellite chlorophyll extends the
bias correction away from the satellite data points, while
maintaining the higher order model variability. Because
of the wide range of chlorophyll over the global oceans
(N3 orders of magnitude), model and satellite data are
logarithmically-transformed (base 10) before applica-
tion of Eq. (1). The analyzed chlorophyll is transformed
back to natural units for re-initialization of the next
model integration. The analyzed chlorophyll is the sum
of the 4 phytoplankton components, and is distributed
among the functional groups to retain the previous
model-derived relative abundances:

DCT ¼ CTðanaÞ−CTðmodelÞ ð2Þ

CTðmodelÞ ¼ RiCi ð3Þ

fi ¼ CiðmodelÞ=CTðmodelÞ ð4Þ

CiðanaÞ ¼ CiðmodelÞ þ fiDCT ð5Þ

where ΔCT (Eq. (2)) is the difference between the
analyzed total chlorophyll, CT(ana), using CRAM and
the model, CT(model). This is called the analysis
increment. CT(model) is the total chlorophyll (sum of
all 4 phytoplankton components, Eq. (3)), Ci is the ith
phytoplankton chlorophyll component, and fi is the
fraction of the ith phytoplankton component of the
total chlorophyll.

Data assimilation is performed daily, to remove
aliases associated with sampling by SeaWiFS (i.e.,
cloud cover, sun glint, inter-orbit gaps), that are
incorporated in 8-day and monthly data products.
Assimilation occurs at model midnight.

CRAM is computationally very fast, so much that
there is nearly negligible additional processing time in
its use. However, it is very strongly weighted toward the
data. Thus data errors are an important problem in its



Fig. 2. Pathways and interactions among the components of the Biogeochemical processes model, comprising 4 phytoplankton groups, 4 nutrient
groups, a single herbivore group and 3 detrital components.
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application. For this reason, data errors must be mini-
mized to the extent possible. In the present application,
data error minimization efforts involve:

1) All daily SeaWiFS chlorophyll N2 times the monthly
mean are excluded
Fig. 3. Regional model weighting factors along with delineation of the major o
on the figure: (A) Amazon River outflow region, (B) Mauritanian offshore re
weighting is used depending upon the satellite chlorophyll concentration, C(

if C(sat)N2 mg m−3, then weight=1.0
else if C(sat)N1 mg m−3, then weight=0.9
In the Mauritanian offshore region (B)

if C(sat)N1 mg m−3, then weight=0.9
else if C(sat)N0.5 mg m−3, then weight=0.75.
2) SeaWiFS data are weighted 25% monthly mean to
75% daily data

3) SeaWiFS data occurring within a model grid point
containing ice are excluded

4) Regional weighting of model and SeaWiFS chloro-
phyll is enforced (Fig. 3)
ceanographic basins. There are 3 special cases, with outlines delineated
gion, and (C) Congo River outflow region. In these sub-regions, higher
sat). In the Amazon and Congo outflow region (A and C)
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The fourth data error minimization is based on
analyses by Gregg and Casey (2004) indicating regions
where SeaWiFS tends to perform poorly compared to in
situ data. It is also partly based on assimilation trial-and-
error: where the assimilation produces negative values of
any of the model variables or where unrealistic values
occur, heavier weighting toward the model is enforced.
Typically the two circumstances overlap. For example,
excessively high chlorophyll concentrations are produced
by the assimilation in the Congo and Amazon/Orinoco
River discharges. These are regions dominated by
CDOM, which produce erroneous chlorophyll values in
satellite retrievals. These regions were shown to have a
poor comparison with in situ data (Gregg and Casey,
2004). Similar problems occur with respect to regions
where light-absorbing dust is prevalent, such as the
tropical Atlantic and North and Equatorial Indian Oceans
(Gregg and Casey, 2004). The regional model weighting
factors used in the assimilation are shown in Fig. 3.

3.3. Data sets

Global chlorophyll data from SeaWiFS were ob-
tained from the NASA Ocean Color Web site at daily
and monthly, 9-km resolution. The data set version
number was 5.1. The data were re-mapped to the model
grid before assimilation and comparison.

Forcing data sets are shown in Table 3. Soil dust data
sets were available only for the period January 2000
through July 2002. Climatologies were created to
provide data when needed outside this period.

In situ chlorophyll data were obtained from the
SeaWiFS Bio-Optical Archive and Storage System
(SeaBASS; Werdell and Bailey, 2002) and the NOAA/
National Oceanographic Data Center (NODC)/Ocean
Climate Laboratory (OCL) archives (Conkright et al.,
2002a). This was an updated version of the same com-
bined data set used byGregg andCasey (2004). The in situ
data were re-mapped to the model grid on a daily basis.

3.4. Performance evaluation

SeaWiFS data assimilation is evaluated in the context
of chlorophyll (state estimation) and primary production
(flux estimation). For chlorophyll, monthlymean values of
the assimilation model are compared with monthly mean
SeaWiFS chlorophyll. Analyses involve the percent error

Percent Error ðPEÞ ¼ CðassimÞ−CðsatÞ
CðsatÞ � 100 ð6Þ

where CT(assim) is the assimilation model total chloro-
phyll (which differs fromCT(ana) because it is the result of
the assimilation process where CT(ana) is used to re-
initialize the model), and C(sat) is the satellite (SeaWiFS)
chlorophyll.

Monthly percent errors are computed over the entire
model domain where SeaWiFS and assimilation model
chlorophyll values are co-located, and the bias is
estimated using the median of the percent errors:

Monthly Median Percent Error ðMMPEÞ
¼ medianðPEÞ ð7Þ

Themedianwas chosen for error analysis because of the
lognormal distribution of chlorophyll data (Campbell,
1995). Logarithm transforms are common in such
circumstances but percent errors are difficult to obtain
and interpret. The median is nearly independent of the
distribution of the data and is thus a useful, simple, and
easy-to-interpret representation of the bias regardless of the
distribution, and naturally incorporates the percent error.

The annual error is computed as the mean of the
monthly median percent error over the 12 months of the
year

Annual Mean Percent Error ðAMPEÞ ¼ MMPE
12

ð8Þ

Use of the mean of the monthly medians to obtain an
annual value is reasonable because the MMPEs are
normally distributed. This is confirmed by observation that
themedian of theMMPEs produces nearly the same value.

The uncertainty, or dispersion of the data, is
represented by the Annual Semi-Interquartile Range
(ASIQR)

Monthly Semi� Interquartile Range ðMSIQRÞ
¼ IQRðPEÞ⁎0:5 ð9Þ

Annual Semi� Interquartile Range ðASIQRÞ
¼ MSIQR

12
ð10Þ

The interquartile range (IQR) encompasses all data
between the 25th percentile and the 75th percentile of
the data. One-half this value, the Semi-Interquartile
Range (SIQR), is analogous to the standard deviation
for normally-distributed data, in that the median±SIQR
contains 50% of the data. The difference is that the
mean±standard deviation encompasses 66% of the
data.

Assimilationmodel annual errors are also evaluated by
comparison with those from the free-run (control, i.e., no
assimilation) model. The assimilation frequency is also
adjusted, by assimilating every 2 days, 3 days, etc. instead
of daily assimilation, to observe error growth.
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Additionally, SeaWiFS, free-run model, and assim-
ilation model chlorophyll are compared against the large
data base of in situ chlorophyll data from NASA/
SeaBASS and NOAA/NODC. Analyses involve use of
the bias and uncertainty defined similarly to the monthly
analysis defined in Eqs. (6)–(10) except compiling all
daily data over the 6-year time span into a single
representation of error, where in situ data and satellite/
model data are coincident and co-located.

Percent ErrorðPEisÞ ¼ CðassimÞ−CðisÞ
CðisÞ � 100 ð11Þ

Median Percent Error ðMPEÞ ¼ medianðPEisÞ ð12Þ

Semi� Interquartile Range ðSIQRÞ
¼ IQRðPEisÞ⁎0:5 ð13Þ

where C(is) indicates chlorophyll concentration of in
situ data and PEis is the percent error of the assimilated
chlorophyll relative to the in situ chlorophyll.

Primary production provides a means to evaluate the
ability of the assimilation model to improve flux
estimates. Primary production is computed in the
model as a function of growth rate multiplied by the
carbon:chlorophyll ratio:

PP ¼
Z

RliCi U dz ð14Þ

where μi is the realized new growth rate of phytoplank-
ton component i, Ci is the chlorophyll concentration of
component i, Φ is the carbon:chlorophyll ratio, and the
product is integrated over depth. Assimilation of
chlorophyll affects the total chlorophyll but not the
relative abundances of the phytoplankton groups, μ, or
Φ directly. All three can be affected by the assimilation
of chlorophyll indirectly, however, by changing the
irradiance in the water column and the horizontal and
vertical gradients of phytoplankton and nutrients. Free-
run model-computed primary production is compared
with model-computed primary production derived from
assimilated chlorophyll and finally against primary
production derived directly from satellite chlorophyll
data using the Vertically Generalized Production Model
(VGPM; Behrenfeld and Falkowski, 1997). The VGPM
requires chlorophyll, SST, and photosynthetically avail-
able radiation (PAR) as inputs. Chlorophyll is taken
from SeaWiFS, SST is the same source as used for
model forcing (Table 3)), and PAR is derived from the
atmospheric component of OARM, with wavelength
region 350–700 nm selected and converted to quanta.
4. Results and discussion

4.1. NOBM

Minor changes in NOBM (see Appendix A) neces-
sitated re-evaluation to ensure its performance did not
degrade from Gregg et al. (2003). In the 50th year of
model execution using climatological monthly forcing,
basin-scale seasonal chlorophyll variability from the
model was statistically positively correlated (Pb0.05)
with those determined from SeaWiFS monthly climato-
logical chlorophyll in each of the 12 major oceano-
graphic basins of the world (see Fig. 3), except the
Equatorial Pacific, which exhibited very little seasonal
variability. Global annual chlorophyll was 18.2% lower
than SeaWiFS. Annual mean log-transformed dissolved
iron concentrations in the model surface layer were
positively correlated with observations (Pb0.05) over
the 10 (out of 12) major oceanographic basins where data
were available (1951 in situ data records derived from
the general literature, see Gregg et al., 2003 for details).
The South Indian and South Atlantic were the basins
where dissolved iron data were lacking.

Overall patterns of phytoplankton functional group
distributions exhibited broad qualitative agreement with in
situ data (359 surface layer observations, see Gregg et al.,
2003 for details). Diatoms, cyanobacteria, and coccolitho-
phores each exhibited statistically significant correlation
with the in situ data across basins. Chlorophytes did not.
Chlorophytes are a transitional group in the model, and
they represent a wide range of phytoplankton, such as
flagellates, Phaeocystis spp., etc. This expectation is
probably unrealistic, and probably accounts for the lack of
statistical significance in their relative abundances.

4.2. SeaWiFS assimilation 2001

The year 2001 was used to evaluate the effectiveness
of chlorophyll assimilation. Here the free-run and
assimilation models were forced with daily data.
These were from the same sources as in Table 3, except
at daily time-varying frequencies. Daily wind stresses
were weighted 80:20 percent monthly:daily to minimize
transient high wind events.

Basin-scale seasonal variability for both the free-run
and assimilation models were statistically positively
correlated with SeaWiFS in all 12 major basins, but the
correlation coefficients for the assimilation model were
much higher (Table 4). These results suggest the lack of
significance for the Equatorial Pacific in the cli-
matological model was due to use of climatological
forcing.



Table 4
Mean annual basin difference from SeaWiFS for the free-run and the
assimilation model, and the correlation coefficients (r) for the
correlation with SeaWiFS seasonal variability for 2001

Basin Free-run model Assimilation model

Difference r Difference r

North Atlantic −25.7% 0.891⁎ −16.8% 0.998⁎

North Pacific −32.5% 0.724⁎ −20.1% 0.991⁎

North Central Atlantic −32.5% 0.816⁎ −16.8% 0.819⁎

North Central Pacific 36.1% 0.959⁎ 2.1% 0.992⁎

North Indian −64.4% 0.779⁎ −50.1% 0.871⁎

Equatorial Atlantic −44.0% 0.704⁎ −26.2% 0.903⁎

Equatorial Pacific −4.3% 0.645⁎ −4.5% 0.963⁎

Equatorial Indian −22.2% 0.941⁎ −13.3% 0.974⁎

South Atlantic 20.3% 0.865⁎ −3.6% 0.991⁎

South Pacific 70.6% 0.794⁎ 3.4% 0.990⁎

South Indian 49.8% 0.725⁎ 6.0% 0.999⁎

Antarctic 24.2% 0.903⁎ −10.7% 0.971⁎

An asterisk indicates the correlation is significant at Pb0.05.
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Daily assimilated satellite chlorophyll from Sea-
WiFS for April 1 compared favorably with monthly
mean SeaWiFS data (Fig. 4). Although there was broad
Fig. 4. Comparison of chlorophyll (mg m−3) from the assimilation mode
chlorophyll distributions represent simulations for April 1, 2001. SeaWiFS da
mean. Grey indicates land and coast, black indicates missing data, and whit
agreement between the free-run model and SeaWiFS
monthly, the improvement using assimilation was clear.
SeaWiFS chlorophyll for the same day as the free run
and assimilated models is also shown, but because of
cloud obscuration, sun glint, sensor tilt change, and
inter-orbit gaps, it is difficult to evaluate the com-
parison. This illustrates the additional usefulness of
assimilation, in providing complete daily coverage.

A more quantitative description of the effectiveness of
assimilation is provided using monthly means of the
assimilation model and SeaWiFS, and taking the
difference (Fig. 5). For March 2001, the overall similarity
of the assimilation and SeaWiFS was evident, and largely
supported by the difference field. The largest differences
occurred in the Arabian Sea, the Congo mouth, and the
Mauritanian coast. All of these were by design in the
assimilation model, with model weighting factors largest
in these areas of low confidence in SeaWiFS. In all cases
the differences were underestimates by the assimilation
model, which was desired. Other smaller differences
occurred in the northern extremities of the North Atlantic,
l, the free-run model, and SeaWiFS. The assimilation and free-run
ta for the same day are shown for comparison, along with the monthly
e indicates sea ice.



Fig. 5. Assimilation model chlorophyll (mg m−3), SeaWiFS mean chlorophyll, and the difference (Assimilation-SeaWiFS) for March 2001.
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the Pacific in the extreme western edge of the Bering Sea,
and in the Atlantic sector of the Southern Ocean. Again
the differences were underestimates by the assimilation.
Overestimates by the assimilation were generally small
(0.01–0.05 mg m−3 chl). A couple of notable exceptions
were offshore of the Somalian coast, and the east-central
Indian Ocean, where overestimates by the model of 0.05–
0.1 mg m−3 occurred.

Similar results occurred for September 2001 (Fig. 6).
Again the overall agreement between the assimilation
model and SeaWiFS was good, with disparities in
similar regions, specifically the Congo and Orinoco
River outflows, the Arabian Sea, and the upper northern
latitudes. There was a band in the Equatorial Atlantic
where the assimilation model overestimated SeaWiFS,
that did not appear related to the Congo River.

The growth of error as a function of assimilation
frequency was tracked using the annual bias and
uncertainty (Fig. 7). Using daily assimilation, the
annual bias was 5.5% relative to SeaWiFS, which was
a very large improvement over the error for the free-
run model at 21.0%. The uncertainty improved from
65.3% in the free-run model to 10.1% in the
assimilation model. The error grew as the assimilation
frequency decreased. The uncertainty was still b30%
if the assimilation occurred every 5 days. The bias
remained b15% for up to a 6-day assimilation
frequency. At the other extreme, very low assimilation
frequencies, the annual bias and uncertainty
approached the free-run model. The lowest assimila-
tion frequency was once per year (every 183 days) for
which the error is indistinguishable from the free-run
model.

4.3. SeaWiFS assimilation 1997–2003

A long-term run of the free-run model and the
assimilation model for 1997–2003 using monthly



Fig. 6. Assimilation model chlorophyll (mg m−3), SeaWiFS mean chlorophyll, and the difference (Assimilation-SeaWiFS) for September 2001.
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forcing illustrates the improvement of assimilation in
the major oceanographic basins (Fig. 8). The free-run
model produced seasonal variability in good agree-
Fig. 7. Annual bias and uncertainty for assimilation as a function of assimilat
days, 3 every 3 days, etc.). The annual bias and uncertainty for the free-run
ment with SeaWiFS basin mean chlorophyll, and also
good correspondence with low biases in many of the
basins, such as the North Central Pacific, North
ion frequency (1 indicates assimilation performed every day, 2 every 2
model are shown.



Fig. 8. (a) SeaWiFS monthly mean chlorophyll (diamonds) and daily chlorophyll from the free-run model (solid line) for 1997–2003. (b) SeaWiFS
monthly mean chlorophyll (diamonds) and daily chlorophyll from the assimilation model (solid line) for 1997–2003. Assimilation of SeaWiFS
chlorophyll did not begin until September 1997 (beginning of SeaWiFS data collection).
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Atlantic, Equatorial Pacific, South Indian, and South
Atlantic (Fig. 8a). There were several basins where a
substantial bias was apparent in the free-run model. This
was particularly true in the North Indian and Equatorial
Atlantic, where a large underestimate by the model
occurred, but also in the spring bloom peaks in the North
Pacific and Antarctic basins, with underestimates and
overestimates buy the model, respectively.



Table 5
Statistics for the comparison of SeaBASS/NODC chlorophyll data for
the period 1998–2003 with coincident, co-located SeaWiFS, free-run
model and assimilation model chlorophyll

Bias Uncertainty N

SeaWiFS −1.3% 32.7% 2086
Free-run model −1.4% 61.8% 4465
Assimilation model 0.1% 33.4% 4465

N indicates the number of points where in situ and satellite/model
points were coincident and co-located.
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The assimilation model kept the seasonal variability
agreement with SeaWiFS that the free-run model
demonstrated, but additionally reduced the basin mean
biases (Fig. 8b). The Antarctic and North Central Atlantic,
which in the free-run model exhibited substantial biases,
were now in nearly complete agreement. The large
departure in the North Central Atlantic in autumn 1998
corresponded to a massive dust plume arising from
northwestern Africa that was apparently undetected by the
SeaWiFS processing algorithms (Gregg, 2002b). It was
excluded by the assimilation here. The North Indian and
Equatorial Atlantic showed improvement in the assimila-
tion model, but still underestimated SeaWiFS. Model
weighting factors were very high in these basins because
of low confidence in SeaWiFS data (Gregg and Casey,
2004).

The assimilation model continued to underestimate
the North Atlantic and North Pacific spring bloom
maximum (Fig. 8b). In the North Atlantic, the under-
estimation appeared to be worse in the assimilation
than in the free-run model. However, the distribution
Fig. 9. Annual primary production for the period 1998–2003 from the VGPM
period for the free-run model and assimilation model are indicated.
of chlorophyll over the North Atlantic was improved
by the assimilation (see Fig. 4). The very high spring
bloom peaks in SeaWiFS in the North Pacific were not
simulated well by either the free-run or assimilation
models. Most of the high values were derived from
extremely high SeaWiFS chlorophyll in the western
Bering Sea, near Kamchatka.

A detailed comparison of the models with in situ data
showed major improvement by assimilation. The bias
and uncertainty of SeaWiFS against the SeaBASS/
NODC in situ were −1.3% and 32.7%, respectively
(Table 5). The free-run model performed much more
poorly against the in situ data set than SeaWiFS in
uncertainty at 61.8%, but comparable bias −1.4%. The
assimilation model had similar uncertainty as SeaWiFS
compared to the in situ data set (33.4%) but improved
and nearly negligible bias (0.1%). The assimilation
model (as well as the free-run model) had more than
twice the number of coincident, co-located in situ/model
matchup data points. This is a consequence of the
absence of gaps in the model record in contrast to
SeaWiFS.

Global annual primary production estimates from
three sources, the VGPM, free-run model, and assim-
ilation model, indicated reasonably good correspon-
dence over the 6-year time series for which SeaWiFS
data were used in this effort (Fig. 9). Interannual
variability was mimicked among all three estimates. The
mean of the 6-year time series indicated that the free-run
model overestimated PP as derived from VGPM by
nearly 21%. The assimilation model reduced the
overestimate by nearly half, producing a more minor
overestimate of 10.7%.
, free-run model, and assimilation model. The mean departures over the
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5. Summary

Assimilation of chlorophyll data from SeaWiFS
exhibited substantial improvements over free-run simula-
tions. Biases in basin means were reduced to 5.5% from
21.0%, and mean uncertainties were much lower for the
assimilation model (10.1%) than the free-run model
(65.3%). This represented a nearly 4-fold improvement in
bias and a 6-fold improvement in uncertainty. When
compared to in situ data for the 6-year time period from
1998 through 2003, the assimilation model had a bias of
0.1%, with an uncertainty of 33.4% for daily coincident,
co-located data. SeaWiFS bias was slightly higher at
−1.3% with similar uncertainty at 32.7%. The free-run
bias and uncertainty at −1.4% and 61.8%, respectively,
indicated how much the assimilation improved model
results. Annual primary production indicated a smaller
improvement (mean difference from VGPM=10.7% for
the assimilation model versus 20.9% for the free-run
model), representing an improvement of nearly a factor of
2, assuming the validity of the VGPM. These results
suggest promise for assimilation of satellite ocean
chlorophyll into global models. But they also point to
areas of needed improvement. The fact that the
assimilated variable shows the most improvement is not
surprising, and is an important attribute for data
assimilation. The fact that flux (primary production)
exhibited less improvement than biomass (chlorophyll)
using assimilation suggests the model continues to trend
in the wrong direction despite assimilation. It also
suggests that similar results may be expected for other
non-assimilated variables, such as phytoplankton group
distributions and nutrients. There remains considerable
work to be done on assimilation of satellite ocean color,
such as better handling of ocean color data errors, utilizing
other model variables in a multi-variate solution,
accounting for subsurface changes, as well as investigat-
ing the potential for using other ocean color products,
such as diffuse attenuation coefficient at 490 nm, and
potentially new products such as particulate organic
carbon and calcite. Nevertheless, there is much potential
in ocean color assimilation, and this effort is intended to
represent an initial attempt on a global scale.
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Appendix A. Biogeochemical processes model
description

NOBM is based on Gregg et al. (2003). There are
several new features in the biogeochemical processes
model component:

– new maximum phytoplankton growth rates at 20 °C
– full detrital dynamics with 3 components, fully
coupled to the OGCM

– a new formulation for the temperature-dependence
for grazing

– a new formulation for nitrogen fixation for the
cyanobacteria component

– introduction of dissolved iron scavenging and an
increase in atmospheric iron solubility

– new nitrogen half-saturation constants for chlorophytes
– new iron half-saturation constants for chlorophytes
and cyanobacteria

Other aspects of the biogeochemical processes model
are described in Gregg et al. (2003), but are provided
here for completeness.

The governing equations of the model are
Phytoplankton

∂
∂t

Pi ¼jðKjPiÞ−j•VPi−j•ðwSÞiPi þ liPi−gH−jPi

ðA1Þ
i=1=diatoms
i=2=chlorophytes
i=3=cyanobacteria
i=4=coccolithophores

Nutrients

∂
∂t

NN ¼ jðKjNNÞ �j•VNN−bn½Rilif ðNO3ÞiPi�
þ RaCDC=ðC : NÞ

ðA2Þ

∂
∂t

NA ¼ jðKjNAÞ−j•VNA−bN½RilixðNH4ÞiPi�
þ bNe½gH þ g2H

2�
ðA3Þ
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∂
∂t

NS ¼ jðKjNSÞ−j•VNS−bSl1xðSiÞ1P1

þ RaSDS ðA4Þ
∂
∂t

NF ¼ jðKjNFÞ−j•VNF−bF½RilixðFeÞiPi�
þ bFe½gH þ g2H

2� þ RaFDF þ AFe=L
� hNF

ðA5Þ

NN nitrate
NA ammonium
NS silica
NI dissolved iron

Herbivores

∂
∂t

H ¼ jðKjHÞ−j•VH þ ð1−eÞgH−g1H−g2H
2

ðA6Þ
Detritus

∂
∂t

DC ¼ jðKjDCÞ−j•VDC−j•ðwdÞCDC−RaCDC

þ U½jRiPi þ g1H � þ Uð1−eÞg2H2

ðA7Þ
∂
DS ¼ jðKjDSÞ−j•VDS−j•ðwdÞSDS−RaSDS
∂t

þ bS½jP1 þ gH �
ðA8Þ

∂
∂t

DF ¼ jðKjDFÞ−j•VDF−j•ðwdÞIDF−RaFDF

þ bF½jRiPi þ n1H � þ bFð1−eÞg2H2 þ hNF

ðA9Þ

DC carbon/nitrogen detritus
DS silica detritus
DF iron detritus

where the symbols and values are identified in Appendix
Table 1. Bold denotes a vector quantity. All biological
processes are assumed to cease in the presence of sea ice,
which is included as an external forcing field.

A.1. Phytoplankton

The growth formulation includes dependence on total
irradiance (ET), nitrogen as nitrate plus ammonium (NT),
silica (Si — for diatoms only), iron (Fe), and
temperature (T)

li ¼ lmmin½xðETÞi;xðNTÞi;xðSiÞi;xðFeÞi�RGi ðA10Þ
where i indicates the phytoplankton functional group
index (in order, diatoms, chlorophytes, cyanobacteria,
and coccolithophores), μ is the total specific growth rate
(d

−1) of phytoplankton, μm is the maximum growth rate
at 20 °C (Appendix Table 1). The term ω(ET) represents
the fraction of growth that is a function solely of the total
irradiance (μmol quanta m−2 s−1),

xðETÞ ¼ ET

ðET þ kEÞ ðA11Þ

where kE is the irradiance at which μ=0.5 μm and
equals 0.5Ik, where Ik is the light saturation parameter.
The nutrient-dependent growth fractions are

xðNO3Þi ¼
NO3

½NO3 þ ðkNÞi�
ðA12Þ

xðNH4Þi ¼
NH4

½NH4 þ ðkNÞi�
ðA13Þ

xðNTÞi ¼ xðNH4Þi þ f ðNO3Þi ðA14Þ

f ðNO3Þ ¼ min½xðNO3Þi; 1� xðNH4Þi� ðA15Þ

(Gregg and Walsh, 1992)

xðSiÞi ¼
Si

½Siþ ðkSÞi�
ðA16Þ

xðFeÞi ¼
Fe

½Feþ ðkFÞi�
ðA17Þ

Temperature-dependent growth is from Eppley
(1972)

R ¼ 1:066ðT−20Þ ðA18Þ

which produces a temperature-growth factor normalized
to 20 °C. The term G in Eq. (A10) is an additional
adjustment used for the cyanobacteria component that
reduces their growth rate in cold water (b15 °C)

G3 ¼ 0:0294T þ 0:558 ðA19Þ

Gi=1 for the other three phytoplankton components
(i=1, 2, 4). This effect conforms to observations that
cyanobacteria are scarce in cold waters (Agawin et al.,
1998, 2000). The cyanobacteria component possesses
a modest ability to fix nitrogen from the water column,
as observed in Trichodesmium spp. (Carpenter and
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Romans, 1991). The nitrogen fixation is expressed as
additional growth occurring when nitrogen availability
is b (kN)3,

lnfix ¼ 0:25expð−75P3Þ ðA20Þ
where the index 3 indicates cyanobacteria. The biomass
dependence represents a progressive community
changeover from non-N-fixing cyanobacteria to N-
fixing bacteria as the total population declines under
nitrogen-stressed conditions. The total N-limited growth
rate plus the additional growth derived from N-fixation
is not allowed to exceed the growth rate where total
nitrogen= (kN)3. No accounting for denitrification is
made in the model.

Photoadaptation is simulated by stipulating 3 states:
50, 150 and 200 (μmol quanta m−2 s−1). This is based
on laboratory studies which typically divided experi-
ments into low, medium, and high classes of light
adaptation. Carbon:chlorophyll ratios (Φ) correspond to
the photoadaptation state, to represent the tendency of
phytoplankton to preferentially synthesize chlorophyll
in low light conditions, to enable more efficient photon
capture. The three Φ states corresponding to the three
light states are 25, 50 and 80 g g−1. The Φ results for
diatoms in the model closely mimic Anning et al.'s
(2000) results for diatoms. For irradiance levels falling
between the three light states, the C:chl ratios are
linearly interpolated.

Mean irradiance is computed during daylight hours,
and then the phytoplankton photoadaptive state is
classified accordingly. This calculation is only per-
formed once per day to simulate a delayed photoadapta-
tion response. Light saturation constants for the three
light levels are provided in Appendix Table 1.

Phytoplankton vector sinking is treated as additional
advection in the z-direction, and is given at 31 °C,
representing approximately the maximum. It is adjusted
by viscosity according to Stokes Law (Csanady, 1986),
which is parameterized here by temperature

wsðTÞ ¼ wsð31Þ½0:451þ 0:0178T � ðA21Þ
Coccolithophore sinking rates were allowed to vary

as a function of growth rate from 0.3 to 1.4 m d−1 based
on observations by Fritz and Balch (1996). A linear
relationship was assumed

ws4 ¼ 0:752l4ðhighÞ þ 0:225 ðA22Þ
where ws is the sinking rate of coccolithophores (m d−1),
μ(high) is the maximum growth rate actually achieved
for the previous day, and the subscript 4 represents
coccolithophores.
A.2. Nutrients

The diversity in the processes affecting the four
nutrient groups requires elucidation in 4 separate
equations, unlike the phytoplankton. All are taken up
by phytoplankton growth, with silica subject only to
diatom uptake (note the subscript=1 in Eq. (A4)
denoting diatoms). For three of the nutrients, nitrate,
silica, and dissolved iron, corresponding detrital pools
remineralize to return nutrients previously uptaken by
phytoplankton. There is no detrital pool for ammonium,
which is excreted as a function of herbivore grazing, and
as a function of higher order ingestion of herbivores,
represented by the term n2H

2 in Eqs. (A3), (A5), (A6),
(A7), and (A9). Dissolved iron also has an excretion
pathway, but nitrate and silica do not. The nutrient to
chlorophyll ratios, denoted b in Eqs. (A2)–(A5), are
derived from Redfield ratios, which are constant
(Appendix Table 1) and the carbon:chlorophyll (Φ)
ratio which is not.

bN ¼ U=C : N ðA23Þ

bS ¼ U=C : S ðA24Þ

bF ¼ U=C : Fe ðA25Þ

This leads to variable nutrient to chlorophyll ratios in
the model.

As in Gregg et al. (2003) dust deposition fields are
derived from Ginoux et al. (2001). In this model, four
dust size fractions are transported, corresponding to clay
(smallest) and three increasing fractions of silt. The iron
content is assumed to vary among the clay and silt
fractions as follows: clay=3.5% iron, silt=1.2% iron
(Fung et al., 2000). Iron solubility is assumed at 2% for
all fractions, which is toward the low end of current
estimates (Fung et al., 2000), but is the same as used by
Moore et al. (2004).
A.3. Herbivores

Grazing uses an Ivlev formulation (McGillicuddy
et al., 1995),

gðTÞ ¼ gmRH ½1−expð−KRiPiÞ� ðA26Þ

RH is the maximum grazing rate at 20 °C (γm) ad-
justed by temperature

RH ¼ 0:06expð0:1TÞ þ 0:70 ðA27Þ
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The temperature-dependence for grazing is more
linear than that for phytoplankton, reflecting the larger
size of their overall community. The grazing represents
the total loss of phytoplankton to herbivores, as indicated
by the summation symbol, but is applied to the individual
phytoplankton functional groups proportionately to their
relative abundances. This enables herbivore grazing to
adapt the prevailing phytoplankton community.

The two loss terms in Eq. (A6) represent the death of
herbivores (n1H) and higher order heterotrophic losses
(n2H

2). These formulations and parameters (Appendix
Table 1) were taken from McGillicuddy et al. (1995).

A.4. Detritus

Three detrital components represent the three major
nutrient elements, carbon/nitrogen, silica, and iron. The
nitrogen detritus is kept as carbon in the model, but since
the C:N ratio is constant, it is simple to convert when
needed. All are subject to advection, diffusion and
sinking. Detrital sinking, like phytoplankton sinking, is
dependent on viscosity parameterized here in terms of
temperature, using the same formulation. Remineraliza-
tion is also temperature-dependent, but uses the
phytoplankton growth-dependence term Eq. (A18).
Silica contained in the diatom component of phyto-
plankton is assumed to pass through herbivores upon
grazing directly into the silica detritus pool. No silica
remains in the herbivore component at any time.

Initial conditions
NOBM underwent a spin-up of a total of 50 years

under climatological forcing. For the first 20 years,
initial dissolved iron conditions were from Fung et al.
(2000), and nitrate and silica distributions were from
annual climatologies from the National Oceanographic
Data Center (NODC; Conkright et al., 2002b). Ammo-
nium initial conditions were set to 0.5 μM. Initial
conditions for all phytoplankton groups and herbivores
were set to 0.05 mg m−3 chl throughout the entire model
domain. Initial conditions for detritus were set to 0.
After 20 years, dissolved iron and detritus distributions
were retained, while all other fields were reset to their
original values. The model was run again for 30 years.
This methodology enables dissolved iron to reach
steady state without adversely impacting phytoplankton
group distributions with excessively low initial values.

Appendix B. Appendix Table 1

Notation and parameters and variables for NOBM.
Values are provided for the parameters and ranges are
provided for the variables. When a parameter varies
according to temperature, the value at a specified
temperature is shown and identified. Nutrient/chloro-
phyll ratios are variable because of photadaptation-
dependence, and only the range is shown, corresponding
to low-, and high-light adaptation, and therefore also
corresponding to C:chl ratios of 20 and 80 g g−1.
Symbol
 Parameter/variable
 Value
 Units
General

K
 Diffusivity
 Variable
 m2 s−1
∇
 Gradient operator
 none
 none

V
 Vector velocity
 Variable
 m s−1
L
 Layer thickness
 Variable
 m
Phytoplankton

ws
 Vector sinking rate of phytoplankton at 31 °C
 m d−1
Diatoms
 1.0

Chlorophytes
 0.25

Cyanobacteria
 0.0085

Coccolithophores
 0.3–1.4
μ
 Specific growth rate of phytoplankton
maximum (μm) at 20 °C:
d−1
Diatoms
 1.50

Chlorophytes
 1.26

Cyanobacteria
 1.00

Coccolithophores
 1.13
ω
 Fraction of growth due to
nutrients, light
0−1
 none
Ik
 Light saturation
 μmol quanta
m−2 s−1
Light level:
 Low
(50)
Medium
(150)
High (200)
Diatoms
 90.0
 93.0
 184.0

Chlorophytes
 96.9
 87.0
 143.7

Cyanobacteria
 65.1
 66.0
 47.0

Coccolithophores
 56.1
 71.2
 165.4
κ
 Senescence
 0.05
 d−1
kE
 Half-saturation for growth as
function of quanta
0.5Ik
 μmol quanta
m−2 s−1
ET
 Total quanta (direct+diffuse)
 Variable
 μmol quanta
m−2 s−1
R
 Temperature-dependence for
growth
0.25–9.4
 None
G
 Temperature-dependence for
cyanobacteria growth
0.5–1.0
 None
Nutrients (N)

bN,S,F
 Nutrient:chlorophyll ratio
 μM

(μg l−1)−1
Nitrogen
 0.3–1.0

Silica
 0.3–1.0

Iron
 0.01–0.04
ε
 Nutrient excretion
 d−1
Nitrate
 0.0

Ammonium
 0.25

Silica
 0.0

Iron
 0.25
kN,S,F
 Half-saturation constant

Nitrogen
 μM
Diatoms
 1.0
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Symbol
 Parameter/variable
 Value
 Units
Nutrients (N)

Chlorophytes
 0.67

Cyanobacteria
 0.50

Coccolithophores
 0.50
Silica
 μM

Diatoms
 0.2
Iron
 nM

Diatoms
 1.0

Chlorophytes
 0.78

Cyanobacteria
 0.67

Coccolithophores
 0.67
θ
 Iron scavenging rate
 d−1
Low iron (b0.06 nM)
 2.0×10−4
High iron (N0.06 nM)
 2.0×10−3
AFe
 Atmospheric deposition
of iron
0.03–967.0
 nmol m−2

d−1
C:N
 Carbon:nitrogen ratio
 79.5
 μg l−1

(μM)−1
C:S
 Carbon:silica ratio
 79.5
 μg l−1

(μM)−1
C:Fe
 Carbon:iron ratio
 1800
 μg l−1

(nM)−1
Herbivores (H)

γ
 Grazing rate
Maximum (γm) at 20 °C
 1.0
 d−1
Λ
 Ivlev constant
 1.0
 (μg l−1)−1
η1, η2
 Heterotrophic loss rates
 0.1, 0.5
 d−1
RH
 Temperature-dependence for
grazing
0.75–2.7
 None
Detritus (D)

wd
 Vector sinking rate of detritus at 31 °C
 m d−1
Carbon/nitrogen detritus
 20.0

Silica detritus
 50.0

Iron detritus
 20.0
αC,S,F
 Remineralization rate at 20 °C
 d−1
Carbon/nitrate
 0.02

Silica
 0.0001

Iron
 0.02
Φ
 Carbon:chlorophyll ratio
 Variable
 g g−1
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